
Unlock Protocol contest

Findings & Analysis Report

2022-04-20

TABLE OF CONTENTS

Overview

About C4

Wardens

Summary

Scope

Severity Criteria

High Risk Findings (4)

[H-01] MEV miner can mint larger than expected UDT total supply

[H-02] Wrong design/implementation of freeTrial allows attacker to steal
funds from the protocol

[H-03] MixinTransfer.sol#transferFrom Wrong implementation can

potentially allows attackers to reverse transfer and cause fund loss to the
users

[H-04] Approvals not cleared after key transfer

Medium Risk Findings (13)

[M-01] Unlock: free UDT arbitrage opportunity

[M-02] Potential economic attack on UDT grants to the referrer

[M-03] Support of different ERC20 tokens
Top

https://code4rena.com/

[M-04] Key buyers will not be able to get refund if lock manager withdraws
profits

[M-05] Refund mechanism doesn’t take into account that key price can
change

[M-06] Key transfer will destroy key if from==to

[M-07] MixinPurchase:shareKey allows to generate keys without purchasing

[M-08] Frontrunning PublicLock.initialize() can prevent upgrades due

to insufficient access control

[M-09] Referrer discount token amount can be manipulated

[M-10] Inaccurate fees computation

[M-11] Missing scaling factor in recordKeyPurchase ?

[M-12] Missing maxNumberOfKeys checks in shareKey and grantKey

[M-13] Malicious user can get infinite free trial by repeatedly refund and
repurchase right before the freeTrial ends

[M-14] MixinRefunds: frontrun updateKeyPricing() for free profit

Low Risk Findings (32)

Non-Critical Findings (54)

Gas Optimizations (48)

Disclosures

Code4rena (C4) is an open organization consisting of security researchers, auditors,
developers, and individuals with domain expertise in smart contracts.

A C4 audit contest is an event in which community participants, referred to as Wardens,
review, audit, or analyze smart contract logic in exchange for a bounty provided by

Overview

ABOUT C4

sponsoring projects.

During the audit contest outlined in this document, C4 conducted an analysis of the Unlock
Protocol smart contract system written in Solidity. The audit contest took place between
November 18—November 24, 2021.

27 Wardens contributed reports to the Unlock Protocol contest:

1. WatchPug (jtp and ming)

2. cmichel

3. elprofesor

4. kenzo

5. pauliax

6. GiveMeTestEther

7. 0x0x0x

8. itsmeSTYJ

9. loop

10. Ruhum

11. defsec

12. Meta0xNull

13. harleythedog

14. Jujic

15. hagrid

16. jayjonah8

17. Reigada

18. HardlyDifficult

WARDENS

https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/cmichelio
https://twitter.com/KenzoAgada
https://twitter.com/SolidityDev
https://twitter.com/GiveMeTestEther
https://twitter.com/itsmeSTYJ
https://twitter.com/loop_225
https://twitter.com/0xruhum
https://twitter.com/defsec_
https://twitter.com/Meta0xNull
https://twitter.com/HardlyDifficult

19. ye0lde

20. TomFrenchBlockchain

21. nathaniel

22. gzeon

23. BouSalman

24. mics

25. sabtikw

26. aga7hokakological

This contest was judged by 0xleastwood.

Final report assembled by itsmetechjay, CloudEllie, and liveactionllama.

The C4 analysis yielded an aggregated total of 49 unique vulnerabilities and 151 total
findings. All of the issues presented here are linked back to their original finding.

Of these vulnerabilities, 4 received a risk rating in the category of HIGH severity, 13 received
a risk rating in the category of MEDIUM severity, and 32 received a risk rating in the
category of LOW severity.

C4 analysis also identified 54 non-critical recommendations and 48 gas optimizations.

The code under review can be found within the C4 Unlock Protocol contest repository, and
is composed of 3 smart contracts written in the Solidity programming language and
includes 604 source lines of Solidity code.

Summary

Scope

https://twitter.com/_ye0lde
https://github.com/TomAFrench
https://twitter.com/n4th4n131?t=ZXGbALC3q6JMMoolZddgHg&s=09
https://twitter.com/gzeon
https://code4rena.com/reports/2021-11-unlock/bousalman.com
https://twitter.com/sabtikw
https://twitter.com/liam_eastwood13
https://twitter.com/itsmetechjay
https://twitter.com/CloudEllie1
https://twitter.com/liveactionllama
https://github.com/code-423n4/2021-11-unlock

C4 assesses the severity of disclosed vulnerabilities according to a methodology based on
OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and low.

High-level considerations for vulnerabilities span the following key areas when conducting
assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Further information regarding the severity criteria referenced throughout the submission
review process, please refer to the documentation provided on the C4 website.

Submitted by elprofesor

UnlockProtocol attempts to calculate gas reimbursement using tx.gasprice , typically

users who falsify tx.gasprice would lose gas to miners and therefore not obtain any
advantage over the protocol itself. This does present capabilities for miners to extract
value, as they can submit their own transactions, or cooperate with a malicious user,

Severity Criteria

High Risk Findings (4)

[H-01] MEV MINER CAN MINT LARGER THAN EXPECTED UDT
TOTAL SUPPLY

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://code423n4.com/
https://github.com/code-423n4/2021-11-unlock-findings/issues/135

reimbursing a portion (or all) or the tx.gasprice used. As the following calculation is

made;

we can see that arbitrary tx.gasprices can rapidly inflate the tokensToDistribute .
Though capped at maxTokens, this value can be up to half the total supply of UDT, which
could dramatically affect the value of UDT potentially leading to lucrative value extractions
outside of the pool.

Using an oracle service to determine the average gas price and ensuring it is within some
normal bounds that has not been subjected to arbitrary value manipulation.

julien51 (Unlock Protocol) disputed and commented:

we can see that arbitrary tx.gasprices can rapidly inflate the
tokensToDistribute. Though capped at maxTokens, this value can be
up to half the total supply of UDT, which could dramatically affect the
value of UDT potentially leading to lucrative value extractions outside
of the pool.

As you noted it would be capped by the actual increase of the GDP transaction.

However we could indeed use an oracle to determine the average gas price over
a certain number of blocks to limit the risk even further.

0xleastwood (judge) commented:

I think the warden has raised a valid issue of value extractions. Whether the value
extracted is capped at a certain number of tokens, I don’t think the issue is
nullified as a result. Miners can realistically fill up blockspace by abusing this
behaviour and then selling netted tokens on the open market. I’ll consider
marking this as medium , what do you think @julien51 ?

 uint tokensToDistribute = (estimatedGasForPurchase * tx.gasprice) * (125 *

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/135#issuecomment-991699670
https://github.com/code-423n4/2021-11-unlock-findings/issues/135#issuecomment-1009512489

0xleastwood (judge) commented:

I think maxTokens will be set to IMintableERC20(udt).totalSupply() / 2 upon

the first call to recordKeyPurchase() . If I’m not mistaken, this could allow a
malicious miner could effectively distribute half of the token supply in one tx.

0xleastwood (judge) commented:

After further offline discussions with @julien51. We agree that this is an issue
that needs to be addressed.

If we consider real-world values for IMintableERC20(udt).totalSupply() and

IMintableERC20(udt).totalSupply() as 1_000_000e18 and 400e18

respectively. Then a miner could mint up to ~1247 UDT tokens valued at $USD

124,688 if they provide a single Ether as their purchase amount. Obviously this
can be abused to generate a huge amount of profit for miners, so as this is a
viable way to extract value from the protocol, I will be keeping this as high

severity.

Submitted by WatchPug

The current design/implementation of freeTrial allows users to get full refund before

the freeTrial ends. Plus, a user can transfer partial of their time to another user using
shareKey .

This makes it possible for the attacker to steal from the protocol by transferring
freeTrial time from multiple addresses to one address and adding up to
expirationDuration and call refund to steal from the protocol.

Given:

[H-02] WRONG DESIGN/IMPLEMENTATION OF FREETRIAL
ALLOWS ATTACKER TO STEAL FUNDS FROM THE PROTOCOL

Proof of Concept

https://github.com/code-423n4/2021-11-unlock-findings/issues/135#issuecomment-1009577434
https://github.com/code-423n4/2021-11-unlock-findings/issues/135#issuecomment-1013810733
https://github.com/code-423n4/2021-11-unlock-findings/issues/188

keyPrice is 1 ETH;

expirationDuration is 360 days;

freeTrialLength is 31 days.

The attacker can create two wallet addresses: Alice and Bob.

1. Alice calls purchase() , transfer 30 days via shareKey() to Bob, then calls
cancelAndRefund() to get full refund; Repeat 12 times;

2. Bob calls cancelAndRefund() and get 1 ETH.

Consider disabling cancelAndRefund() for users who transferred time to another user.

julien51 (Unlock Protocol) confirmed and commented:

I think this is valid! The free trial approach is indeed a risk on that front and we
need to “warn” lock managers about this more.

For lock manager who still want to offer free trials, the best approach would
probably be to set a high transfer fee to make sure that free trials cannot be
transfered.

As a consequence of this, I am not sure this is as critical as indicated by the
submitter.

0xleastwood (judge) commented:

Nice find!

From what I can tell at least, this does seem like a viable attack vector. Can I ask
why this should not be treated as high risk? @julien51

julien51 (Unlock Protocol) commented:

Sorry for the long delay here.
In short: this is valid, but only an issue for locks
which are enabling free trials (no one has done it) and we would make sure our

Recommendation

https://github.com/code-423n4/2021-11-unlock-findings/issues/188#issuecomment-979656014
https://github.com/code-423n4/2021-11-unlock-findings/issues/188#issuecomment-1013831268
https://github.com/code-423n4/2021-11-unlock-findings/issues/188#issuecomment-1068786053

UI shows this as a potential issue.
In other words: a lock manager would need to
explicitly enable free trials, despite our warning to put their own funds at risk. For
that reason I don’t think this is “High”.

0xleastwood (judge) commented:

While this is a valid issue pertaining only to lock managers who explicitly enable
free trials, this may still lead to a loss of funds if cancelAndRefund is called by a

user who has transferred their time to another account. I still believe this
deserves a high severity rating.

In my honest opinion, a warning isn’t sufficient to prevent such abuse. I think on-
chain enforcement ideal in this situation.

Submitted by WatchPug

https://github.com/code-423n4/2021-11-
unlock/blob/ec41eada1dd116bcccc5603ce342257584bec783/smart-
contracts/contracts/mixins/MixinTransfer.sol#L131-L152

[H-03] MIXINTRANSFER.SOL#TRANSFERFROM WRONG IMPLEMENTATION
CAN POTENTIALLY ALLOWS ATTACKERS TO REVERSE TRANSFER
AND CAUSE FUND LOSS TO THE USERS

if (toKey.tokenId == 0) {
 toKey.tokenId = _tokenId;
 _recordOwner(_recipient, _tokenId);
 // Clear any previous approvals
 _clearApproval(_tokenId);
}

if (previousExpiration <= block.timestamp) {
 // The recipient did not have a key, or had a key but it expired. The new exp
 // An expired key is no longer a valid key, so the new tokenID is the sender'
 toKey.expirationTimestamp = fromKey.expirationTimestamp;

 toKey.tokenId = _tokenId;

https://github.com/code-423n4/2021-11-unlock-findings/issues/188#issuecomment-1075667239
https://github.com/code-423n4/2021-11-unlock/blob/ec41eada1dd116bcccc5603ce342257584bec783/smart-contracts/contracts/mixins/MixinTransfer.sol#L131-L152
https://github.com/code-423n4/2021-11-unlock-findings/issues/182

Based on the context, L131-136 seems to be the logic of handling the case of the recipient
with no key, and L138-148 is handing the case of the recipient’s key expired.

However, in L131-136, the key manager is not being reset.

This allows attackers to keep the role of key manager after the transfer, and transfer the
key back or to another recipient.

Given:

Alice owns a key that is valid until 1 year later.

Alice calls setKeyManagerOf() , making herself the keyManager;

Alice calls transferFrom() , transferring the key to Bob; Bob might have paid a

certain amount of money to Alice upon receive of the key;

Alice calls transferFrom() again, transferring the key back from Bob.

Consider resetting the key manager regardless of the status of the recipient’s key.

julien51 (Unlock Protocol) confirmed:

I think you are onto something here. We will need to investigate further and
reproduce to fix!

 // Reset the key Manager to the key owner
 _setKeyManagerOf(_tokenId, address(0));

 _recordOwner(_recipient, _tokenId);
} else {
 // The recipient has a non expired key. We just add them the corresponding re
 // SafeSub is not required since the if confirms `previousExpiration - block.
 toKey.expirationTimestamp = fromKey.expirationTimestamp + previousExpiration
}

Proof of Concept

Recommendation

https://github.com/code-423n4/2021-11-unlock-findings/issues/182#issuecomment-991678597

0xleastwood (judge) commented:

@julien51 Just following up if you were able to double-check this?

julien51 (Unlock Protocol) confirmed:

This is indeed valid and I think we will need to “patch” this. We’re still unsure how
but we’re exploring multiple ways.

Submitted by cmichel

The locks implement three different approval types, see onlyKeyManagerOrApproved for an
overview:

key manager (map keyManagerOf)

single-person approvals (map approved). Cleared by _clearApproval or
_setKeyManagerOf

operator approvals (map managerToOperatorApproved)

The MixinTransfer.transferFrom requires any of the three approval types in the

onlyKeyManagerOrApproved modifier on the tokenId to authenticate transfers from from .

Notice that if the to address previously had a key but it expired only the
_setKeyManagerOf call is performed, which does not clear approved if the key manager

was already set to 0:

[H-04] APPROVALS NOT CLEARED AFTER KEY TRANSFER

function transferFrom(
 address _from,
 address _recipient,
 uint _tokenId
)
 public
 onlyIfAlive
 hasValidKey(from)

https://github.com/code-423n4/2021-11-unlock-findings/issues/182#issuecomment-1013830991
https://github.com/code-423n4/2021-11-unlock-findings/issues/182#issuecomment-1068786599
https://github.com/code-423n4/2021-11-unlock-findings/issues/160

It’s possible to sell someone a key and then claim it back as the approvals are not always
cleared.

hasValidKey(_from)
 onlyKeyManagerOrApproved(_tokenId)
{
 // @audit this is skipped if user had a key that expired
 if (toKey.tokenId == 0) {
 toKey.tokenId = _tokenId;
 _recordOwner(_recipient, _tokenId);
 // Clear any previous approvals
 _clearApproval(_tokenId);
 }

 if (previousExpiration <= block.timestamp) {
 // The recipient did not have a key, or had a key but it expired. The new e
 // An expired key is no longer a valid key, so the new tokenID is the sende
 toKey.expirationTimestamp = fromKey.expirationTimestamp;
 toKey.tokenId = _tokenId;

 // Reset the key Manager to the key owner
 // @audit doesn't clear approval if key manager already was 0
 _setKeyManagerOf(_tokenId, address(0));

 _recordOwner(_recipient, _tokenId);
 }
 // ...
}

//
function _setKeyManagerOf(
 uint _tokenId,
 address _keyManager
) internal
{
 // @audit-ok only clears approved if key manager updated
 if(keyManagerOf[_tokenId] != _keyManager) {
 keyManagerOf[_tokenId] = _keyManager;
 _clearApproval(_tokenId);
 emit KeyManagerChanged(_tokenId, address(0));
 }
}

Impact

Attacker A has a valuable key (tokenId = 42) with an expiry date far in the future.

A sets approvals for their second attacker controlled account A’ by calling
MixinKeys.setApprovalForAll(A', true) , which sets

managerToOperatorApproved[A][A'] = true .

A clears the key manager by setting it to zero, for example, by transferring it to a
second account that does not have a key yet, this calls the above
_setKeyManagerOf(42, address(0)); in transferFrom

A sets single-token approval to A’ by calling MixinKeys.approve(A', 42) , setting
approved[42] = A' .

A sells the token to a victim V for a discount (compared to purchasing it from the
Lock). The victim needs to have owned a key before which already expired. The
transferFrom(A, V, 42) call sets the owner of token 42 to V , but does not clear

the approved[42] == A' field as described above. (
_setKeyManagerOf(_tokenId, address(0)); is called but the key manager was

already zero, which then does not clear approvals.)

A’ can claim back the token by calling transferFrom(V, A', 42) and the
onlyKeyManagerOrApproved(42) modifier will pass as approved[42] == A' is still

set.

The _setKeyManagerOf function should not handle clearing approvals of single-token
approvals (approved) as these are two separate approval types.
The transferFrom

function should always call _clearApproval in the
(previousExpiration <= block.timestamp) case.

julien51 (Unlock Protocol) confirmed and commented:

Thanks for reporting this.
This is valid and we will fix it.

Proof Of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/160#issuecomment-991687080

Submitted by itsmeSTYJ

Uniswap v2 made oracle attacks much more expensive to execute (since it needs to be
manipulated over X number of blocks) however its biggest drawback is that it reacts slow
to price volatility (depends on how far back you look). Depending on a single oracle is still
very risky and can be exploited given the correct conditions.

Assuming the ideal conditions, it is possible to purchase many keys across many locks for
the UDT token that is distributed to the referrer and sell them on some other exchanges
where the price of UDT is higher; high enough such that the malicious user can still profit
even after requesting for a refund (w/ or w/o a free trial).

This exploit is made possible because of:

the over dependency on a single price oracle

UDT token distribution logic is flawed

The following assumptions has to be true for this attack to work:

1. price of UDT on an exchange is much higher than that from the price retrieved from
the uniswapOracle .

2. Since the price retrieved by udtOracle.updateAndConsult() only updates once per
day, it is slow to react to the volatility of UDT price movements.

3. Malicious user creates a lock and buys many keys across multiple addresses.

4. Malicious user sells these UDT tokens on the exchanges w/ the higher price.

Medium Risk Findings (13)

[M-01] UNLOCK: FREE UDT ARBITRAGE OPPORTUNITY

Proof of Concept

https://github.com/code-423n4/2021-11-unlock-findings/issues/70

5. Malicious user requests for a refund on the keys owned.

6. Repeat until it is no longer profitable i.e. price on other exchanges become close to
parity with the price retrieved by the uniswapOracle .

Use the average of multiple oracle sources so that the price of UDT tokens (from
Unlock.sol ’s PoV) reacts faster.

UDT tokens distributed based on the duration of key ownership.

julien51 (Unlock Protocol) disagreed with severity and commented:

As you noted this is pretty theoretical and given that the amount of UDT minted
is capped to the gas spent, the user will need to 1) purchase a LOT of keys and 2)
cancel them all and 3) find an exchange where the price is significantly different.

0xleastwood (judge) commented:

Nice find!

While, I do agree this is a difficult attack to perform, it is still a valid way of
extracting value from the protocol. Hence, I believe this should be kept as
medium .

2 — Med (M): vulns have a risk of 2 and are considered “Medium” severity

when assets are not at direct risk, but the function of the protocol or

its availability could be impacted, or leak value with a hypothetical
attack path with stated assumptions, but external requirements.

julien51 (Unlock Protocol) commented:

We will mitigate this in an upcoming upgrade by moving to Uniswap v3 for our
oracles.

Recommended Mitigation Steps

[M-02] POTENTIAL ECONOMIC ATTACK ON UDT GRANTS TO
THE REFERRER

https://github.com/code-423n4/2021-11-unlock-findings/issues/70#issuecomment-1004137608
https://github.com/code-423n4/2021-11-unlock-findings/issues/70#issuecomment-1010535323
https://github.com/code-423n4/2021-11-unlock-findings/issues/70#issuecomment-1068788560
https://github.com/code-423n4/2021-11-unlock-findings/issues/186

Submitted by WatchPug

In the current implementation, Unlock.sol#recordKeyPurchase() will send

estimatedGasForPurchase * tx.gasprice worth of UDT to the referrer.

https://github.com/code-423n4/2021-11-
unlock/blob/ec41eada1dd116bcccc5603ce342257584bec783/smart-
contracts/contracts/Unlock.sol#L325-L325

We believe there are multiple potential economic attack vectors to exploit this.

If estimatedGasForPurchase is misconfigured to a higher amount than the actual avg gas

cost for a purchase call, or future network upgrades make the actual gas cost become
lower than the configured estimatedGasForPurchase , it can be exploited simply by
creating a lock and call purchase() many times to mint UDT.

Even if estimatedGasForPurchase is configured to an amount similar to the actual gas
cost, a more sophisticated attack is still possible:

Given:

estimatedGasForPurchase is configured as 200,000 ;

The gas cost of a regular purchase call is about 200,000 .

The attacker can create a lock contract and set the token address to a special gas saving
token, which will SELFDESTRUCT to get a gas refund on transfer .

The attacker can:

1. Mint gas saving token with gas price: 1 gwei ;

uint tokensToDistribute = (estimatedGasForPurchase * tx.gasprice) * (125 * 10 *

Proof of Concept

https://github.com/code-423n4/2021-11-unlock/blob/ec41eada1dd116bcccc5603ce342257584bec783/smart-contracts/contracts/Unlock.sol#L325-L325

2. Call purchase() and use 48 contract slots with gas price: 1000 gwei ;

Total gas saved will be ~0.8 ETH (or other native tokens, eg. BNB, MATIC). Therefore, the
attacker will profit ~0.8 ETH worth of UDT.

See: https://gastoken.io/

Consider setting a global daily upper limit of total UDT grants to referrers, plus, an upper
limit for UDT minted per purchase.

julien51 (Unlock Protocol) acknowledged, but disagreed with severity and commented:

If estimatedGasForPurchase is misconfigured to a higher amount

than the actual avg gas cost for a purchase call, or future network
upgrades make the actual gas cost become lower than the configured
estimatedGasForPurchase , it can be exploited simply by creating a

lock and call purchase() many times to mint UDT.

Absolutely but considering the security model, the admin indeed have full control
over the protocol. We are thinking about finding a mechanism to not hardcode
gas spent but use the actual number eventually. When we do that we should
consider the impact of things like gas-token (even though EIP1559 has probably
made them mostly impractical?).

At this point given that the gas spent is hardcoded, there is a de-facto cap on
how much UDT they could earn (based on the token price).

0xleastwood (judge) commented:

While I agree with the warden, there is potential for value extraction, however, it
does require the admin to be unaware about upcoming network upgrades.

As the sponsor has noted, they will be moving towards a dynamic
estimatedGasForPurchase value, however, from the perspective of the c4

contest, this doesn’t change the outcome of my decision.

Recommendation

https://gastoken.io/
https://github.com/code-423n4/2021-11-unlock-findings/issues/186#issuecomment-991673917
https://github.com/code-423n4/2021-11-unlock-findings/issues/186#issuecomment-1013811232

As the protocol may leak value based on certain network assumptions, I’ll mark
this as medium severity.

2 — Med (M): vulns have a risk of 2 and are considered “Medium” severity
when assets are not at direct risk, but the function of the protocol or

its availability could be impacted, or leak value with a hypothetical
attack path with stated assumptions, but external requirements.

Please note: the following additional discussions and re-assessment took place
approximately 2 months after judging and awarding were finalized. As such, this report will
leave this finding in its originally assessed risk category as it simply reflects a snapshot in
time.

julien51 (Unlock Protocol) commented:

I don’t think the protocl can “leak” value based on that.
The tokens that are used
to compute GDP and distribute tokens have to be approved by the DAO (right
now only USDC, DAI and BAT have been approved on mainnet, and only USDC on
Polygon). I don’t think the DAO would approve gas tokens givem that indeed they
could result in leakage of UDT, so I think it is minor .

0xleastwood (judge) decreased severity to Low and commented:

Considering the sponsor’s comments, I actually agree that this is less likely than
initially stated. Similar to the SafeERC20 issue, it isn’t expected that gas saving

tokens will be approved to compute and distribute UDT tokens. I’ll downgrade

this to low .

Submitted by pauliax, also found by cmichel, Reigada, kenzo, Ruhum, 0x0x0x,
GiveMeTestEther, and WatchPug

The current version of the codebase does not handle special cases of tokens, e.g.
deflationary, rebasing, or those that return true/false on success (see:
https://github.com/d-xo/weird-erc20). Function purchase transfers tokens from

[M-03] SUPPORT OF DIFFERENT ERC20 TOKENS

https://github.com/code-423n4/2021-11-unlock-findings/issues/186#issuecomment-1068789965
https://github.com/code-423n4/2021-11-unlock-findings/issues/186#issuecomment-1075674165
https://github.com/d-xo/weird-erc20
https://github.com/code-423n4/2021-11-unlock-findings/issues/221

msg.sender but it does not check the return value, nor how many tokens were actually
transferred:

I have 2 suggestions here:

1. Use SafeERC20 library to handle token transfers:
https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

2. Consider checking the actual balances transferred (balance after-before) or clearly
documenting that you do not support deflationary / rebasing / etc tokens.

julien51 (Unlock Protocol) disputed and commented:

The only party that would be penalized in the examples you describe is the lock
manager (and beneficiary) who has explicitly deployed the lock using the
(noncompliant) ERC20.
If we consider the threat model here then I think this is
not really an issue, as additional checks would incur a gas cost for everyone.

Please note: the following additional discussions and re-assessment took place
approximately 2 months after judging and awarding were finalized. As such, this report will
leave this finding in its originally assessed risk category as it simply reflects a snapshot in
time.

julien51 (Unlock Protocol) commented:

The fact that this requires an explicit action by the lock manager (ie using a
buggy/malicious ERC20 token) and that it puts only their tokens at risk, I think
this is minor .

0xleastwood (judge) decreased severity to Low and commented:

 token.transferFrom(msg.sender, address(this), pricePaid);

Recommended Mitigation Steps

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/code-423n4/2021-11-unlock-findings/issues/221#issuecomment-991662738
https://github.com/code-423n4/2021-11-unlock-findings/issues/221#issuecomment-1068790582
https://github.com/code-423n4/2021-11-unlock-findings/issues/221#issuecomment-1075664726

Giving this a bit more thought, I think its always safe to enforce these checks
rather than leave it up to the lock manage to potentially make the mistake and
then be liable for this mistake later on. However, considering the threat model, I
do think this is better suited as a low severity issue.

Submitted by kenzo

Unlock contains a feature in which a key buyer can ask for a refund.
The refund is sent
from the lock - where the purchase funds were sent.
The lock manager can withdraw all
funds from the lock.
Therefore, if the lock manager withdraws enough profits from the lock,
the user would not be able to cancel his key and request refund.
Even if a lock manager is
not malicious, if he would want to enable users to cancel their key, he would have to keep
track of how much tokens need to be kept in the contract in order to enable this - not a
trivial calculation. A naive lock manager might accidentally disable refunds for his clients.

Refunds are not guaranteed.
A user might buy a key expecting to cancel it within some
time, only to discover he can not cancel it. (This loss of user funds is why I consider this a
high risk finding.)
An unaware lock manager who just wants to withdraw all his profits
might accidentally discover that he removed his users’ ability to cancel their key.

It seems the Unlock team is aware to some extent that withdrawing breaks refunds, as they
state in the withdraw function:

[M-04] KEY BUYERS WILL NOT BE ABLE TO GET REFUND IF
LOCK MANAGER WITHDRAWS PROFITS

Impact

Notes

 * TODO: consider allowing anybody to trigger this as long as it goes to owne
 * -- however be wary of draining funds as it breaks the `cancelAndRefund` a
 * use cases.

https://github.com/code-423n4/2021-11-unlock-findings/issues/50

However, even if just the owner is allowed to call it, he may break the refund functionality -
on purpose or accidentally.
Looking on Unlock documentation I don’t see a warning to
creators about withdrawing their funds.

withdraw function has no limit on the amount withdrawn, therefore the owner can

withdraw all funds:
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-
contracts/contracts/mixins/MixinLockCore.sol#L133:#L162

cancelAndRefund transfers the funds from the same lock contract:
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-
contracts/contracts/mixins/MixinRefunds.sol#L118
Therefore if there are not enough
funds, the transfer will fail.

Perhaps a sort of MasterChef-like shares system can be implemented in order to make
sure the owner leaves enough funds in the lock to process refunds.

julien51 (Unlock Protocol) disagreed with severity and commented:

As noted, this is actually documented. You are right though that we should make
this more obvious on the UI.
I would not classify this as High Risk.

0xleastwood (judge) decreased severity to Medium and commented:

Nice find! I think this can be downgraded to medium as the availability of the
protocol is impacted by this issue.

julien51 (Unlock Protocol) commented:

This would not affect the whole protocol but only the “malicious” lock and it is
impractice not only documented but also how these things work in the real
world. If Netflix went out of business tomorrow, I could not get a refund on this
month’s membership fee…

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinLockCore.sol#L133:#L162
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinRefunds.sol#L118
https://github.com/code-423n4/2021-11-unlock-findings/issues/50#issuecomment-976135073
https://github.com/code-423n4/2021-11-unlock-findings/issues/50#issuecomment-1013832438
https://github.com/code-423n4/2021-11-unlock-findings/issues/50#issuecomment-1068791454

0xleastwood (judge) commented:

While I mostly agree with the sponsor, this may be intended behaviour as user’s
should not be entitled to a refund in this case. However, based on what was
known at the time, it seemed like this broke the functionality of
cancelAndRefund and expireAndRefundFor functions, hence why it was

marked as medium severity.

Submitted by kenzo, also found by WatchPug and 0x0x0x

Lock manager can change key pricing.
The refund mechanism calculates refund according
to current key price, not price actually paid.

A user refunding can get less (or more) funds than deserved.

Refund only takes the current price into account:
https://github.com/code-423n4/2021-11-
unlock/blob/main/smart-contracts/contracts/mixins/MixinRefunds.sol#L144:#L152

Lock manager can update key price at any point, and the old price is not saved anywhere:
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-
contracts/contracts/mixins/MixinLockCore.sol#L183

So if for example a key price has gone down, a user who tried to refund will get less funds
than deserved.

[M-05] REFUND MECHANISM DOESN’T TAKE INTO ACCOUNT
THAT KEY PRICE CAN CHANGE

Impact

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/50#issuecomment-1075662850
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinRefunds.sol#L144:#L152
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinLockCore.sol#L183
https://github.com/code-423n4/2021-11-unlock-findings/issues/53

Consider saving the amount the user paid, and refund according to that.
Or having a kind of
a price snapshot/version mechanism.

julien51 (Unlock Protocol) acknowledged, but disagreed with severity and commented:

This is a known issue… but indeed we should show things in the UI to indicate
things to users.

0xleastwood (judge) decreased severity to Medium and commented:

Agree this sounds like an issue! However, I don’t think this can be justified as a
high risk issue. But it does seem that the protocol could leak value and impact

users, so marking this as medium .

julien51 (Unlock Protocol) commented:

We actually are adding a new mechanism to keep track of the last price paid by
any user which means we could use it in the next version to solve this issue!

Submitted by kenzo, also found by GiveMeTestEther and cmichel

If calling transferFrom with _from == _recipient , the key will get destroyed (meaning
the key will be set as expired and set the owner’s key to be 0).

A key manager or approved might accidentally destroy user’s token.

Note: this requires user error and so I’m not sure if this is a valid finding.
However, few
things make me think that it is valid:

Unlock protocol checks for transfer to 0-address, so some input validation is there

Since other entities other than the owner can be allowed to transfer owner’s token, it
might be best to make sure such accidental mistake could not happen.

[M-06] KEY TRANSFER WILL DESTROY KEY IF FROM==TO

Impact

https://github.com/code-423n4/2021-11-unlock-findings/issues/53#issuecomment-976137635
https://github.com/code-423n4/2021-11-unlock-findings/issues/53#issuecomment-1013832674
https://github.com/code-423n4/2021-11-unlock-findings/issues/53#issuecomment-1068791889
https://github.com/code-423n4/2021-11-unlock-findings/issues/87

This scenario manifests a unique and probably unintended behavior

By following transferFrom ’s execution:
https://github.com/code-423n4/2021-11-
unlock/blob/main/smart-contracts/contracts/mixins/MixinTransfer.sol#L109:#L166
One
can see that in the case where _from == _recipient with a valid key:

The function will deduct transfer fee from the key

The function will incorrectly add more time to the key’s expiration (L151)

The function will expire and reset the key (L155)

Therefore, the user will lose his key without getting a refund.

Add a require statement in the beginning of transferFrom :

require(_from != _recipient, 'TRANSFER_TO_SELF');

julien51 (Unlock Protocol) confirmed

julien51 (Unlock Protocol) commented:

Fixed since then :)

Submitted by GiveMeTestEther, also found by kenzo

The shareKey function allows a user to share some time with another user that doesn’t

already has/had a key and this generates a new key. This even allows the user to generate
more keys than _maxNumberOfKeys .

Proof of Concept

Recommended Mitigation Steps

[M-07] MIXINPURCHASE:SHAREKEY ALLOWS TO GENERATE
KEYS WITHOUT PURCHASING

https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinTransfer.sol#L109:#L166
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinTransfer.sol#L151
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinTransfer.sol#L155:#L158
https://github.com/code-423n4/2021-11-unlock-findings/issues/87
https://github.com/code-423n4/2021-11-unlock-findings/issues/87#issuecomment-1068792003
https://github.com/code-423n4/2021-11-unlock-findings/issues/242

Attacker generates a lot of EOA addresses, buys a key, share the minimum necessary time
with each address and in each “sharing” a new key gets generated. This allows cheaply to
allocate alot of “keys” with out really purchasing them and a lot of user can’t get a “key”
because purchase has a modifier notSoldOut, that limits the max purchasable to “keys” to
maxNumberOfKeys

Provide direct links to all referenced code in GitHub. Add screenshots, logs, or any other
relevant proof that illustrates the concept.

Manual Analysis

rethink the whole shareKey thingy,

julien51 (Unlock Protocol) acknowledged and commented:

I am not sure this is a bug or even a risk.
Someone could actually achieve the
same thing by purchasing keys at the full price and cancelling them immediately
getting an almost full refund (or even full refund when there is a free trial) and
could quickly get the lock to “sell out”.
It is actually the case with any NFT project
where there is a cap/limit to number of tokens and someone can easily “Capture”
them all.

One way to limit the impact for the lock manager would be to set a cancellation
penalty AND a transfer fee.

0xleastwood (judge) commented:

Nice find! While I understand what the sponsor is saying, this does seem like a
valid way to deny a lock from selling membership to honest users.

julien51 (Unlock Protocol) commented:

Proof of Concept

Tools Used

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/242#issuecomment-979648865
https://github.com/code-423n4/2021-11-unlock-findings/issues/242#issuecomment-1013834438
https://github.com/code-423n4/2021-11-unlock-findings/issues/242#issuecomment-1068792488

Note that a lock manager can easily increase supply to mitigate that (and even
could delete existing keys/NFT to reduce the outstanding supply)

0xleastwood (judge) commented:

While the lock manager can restore the contract to some valid state, this will still
impact protocol availability, even in the short-term.

Submitted by elprofesor, also found by kenzo

The unlock protocols base contract Unlock.sol uses setLocktemplate() to initialize
the implementation contract for the PublicLock proxy. This function will initialize the

relevant PublicLock contract which has been deployed separately.
PublicLock.initialize() does not have any relevant access control and does not

prevent arbitrary users from initialising. This means that a malicious user could front run
the setLocktemplate() forcing the deployer of PublicLock ’s implementation to
redeploy. The process can be repeated, which costs the malicious user less than it would
the owner of the Unlock Protocol, potentially unnecessarily draining funds from the
development team.

Lack of access control on initialize

Implement valid access control on the PublicLock contract to ensure only the relevant

deployer can initialize() .

julien51 (Unlock Protocol) disagreed with severity

0xleastwood (judge) commented:

[M-08] FRONTRUNNING PUBLICLOCK.INITIALIZE() CAN PREVENT
UPGRADES DUE TO INSUFFICIENT ACCESS CONTROL

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/242#issuecomment-1075656944
https://github.com/code-423n4/2021-11-unlock/blob/ec41eada1dd116bcccc5603ce342257584bec783/smart-contracts/contracts/PublicLock.sol#L42-L51
https://github.com/code-423n4/2021-11-unlock-findings/issues/132
https://github.com/code-423n4/2021-11-unlock-findings/issues/132#issuecomment-1075675604
https://github.com/code-423n4/2021-11-unlock-findings/issues/132

I agree with the warden, _publicLockAddress is deployed separately and hence

initialize can be called before setLockTemplate is called.

Submitted by cmichel

The Unlock.recordKeyPurchase function is called on each key purchase (
MixinPurchase.purchase) and mints UDT tokens to the referrer.
The amount to mint is

based on the transaction’s gas price which is controlled by the caller (purchaser):

Tokens can be minted by purchasing a key with themself as the referrer at a high
transaction gas price.
Depending on the UDT price on external markets, it could be
profitable to buy a key at a high gas price, receive UDT and then sell them on a market for a
profit.

The amount minted should be more predictable and not depend on the user’s gas price
input.
Consider declaring an average gas price storage variable that is set by a trusted
party and use this one instead.

julien51 (Unlock Protocol) disagreed with severity and commented:

Depending on the UDT price on external markets, it could be profitable
to buy a key at a high gas price, receive UDT and then sell them on a

[M-09] REFERRER DISCOUNT TOKEN AMOUNT CAN BE
MANIPULATED

uint tokensToDistribute = (estimatedGasForPurchase * tx.gasprice) * (125 * 10 *

Impact

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/155#issuecomment-991691106
https://github.com/code-423n4/2021-11-unlock-findings/issues/155

market for a profit.

Since we get the token price from the Uniswap oracle, the amount of tokens
received is always at most equal to what they would have spent to acquire them
on Uniswap.

0xleastwood (judge) commented:

As the uniswap oracle provides averaged price data, if there is any discrepancy
between the spot price and the TWAP price, this can definitely be abused to
extract value from the protocol. Keeping this as medium .

Submitted by cmichel, also found by 0x0x0x

The MixinTransfer.shareKey function wants to compute a fee such that

time + fee * time == timeRemaining (timePlusFee) :

However, if the time remaining is less than the computed fee time, the computation
changes and a different formula is applied.
The fee is now simply taken on the remaining
time.

[M-10] INACCURATE FEES COMPUTATION

uint fee = getTransferFee(keyOwner, _timeShared);
uint timePlusFee = _timeShared + fee;

if(timePlusFee < timeRemaining) {

 // now we can safely set the time
 time = _timeShared;
 // deduct time from parent key, including transfer fee
 _timeMachine(_tokenId, timePlusFee, false);
} else {
 // we have to recalculate the fee here
 fee = getTransferFee(keyOwner, timeRemaining);
//

https://github.com/code-423n4/2021-11-unlock-findings/issues/155#issuecomment-1013842955
https://github.com/code-423n4/2021-11-unlock-findings/issues/165

It should compute the time without fee as

time = timeRemaining / (1.0 + fee_as_decimal) instead, i.e.,
time = BASIS_POINTS_DEN * timeRemaining / (transferFeeBasisPoints +

BASIS_POINTS_DEN)

.

To demonstrate the difference with a 10% fee and a _timeShared = 10,000s which should

be credited to the to account.

The correct time plus fee which is reduced from from (as in the
timePlusFee < timeRemaining branch) would be 10,000 + 10% * 10,000 = 11,000 .

However, if from has not enough time remaining and timePlusFee >= timeRemaining ,
the entire time remaining is reduced from from but the credited time is computed

wrongly as:
(Let’s assume timeRemaining == timePlusFee):
time = 11,000 - 10% * 11,000 = 11,000 - 1,100 = 9900 .

They would receive 100 seconds less than what they are owed.

When transferring more time than the from account has, the credited time is scaled
down wrongly and the receiver receives less time (a larger fee is applied).

It should change the first if branch condition to timePlusFee <= timeRemaining (less

than or equal).
In the else branch, it should compute the time without fee as

 // @audit want it such that time + fee * time == timeRemaining, but fee is ta
 time = timeRemaining - fee;
}

Proof Of Concept

Impact

Recommended Mitigation Steps

time = BASIS_POINTS_DEN * timeRemaining / (transferFeeBasisPoints +

BASIS_POINTS_DEN)

.

julien51 (Unlock Protocol) confirmed and commented:

Great find!

Submitted by cmichel

The Unlock.recordKeyPurchase function computes the maxTokens as:

Note that grossNetworkProduct was already increased by valueInETH in the code

before.
Meaning, the (2 + 2 * valueInETH / grossNetworkProduct) part of the
computation will almost always be 2 as usually

grossNetworkProduct > 2 * valueInETH , and thus the

2 * valueInETH / grossNetworkProduct is zero by integer division.

The maxTokens curve might not be computed as intended and lead to being able to

receive more token rewards than intended.

The comment “we distribute tokens using asymptotic curve between 0 and 0.5” should be
more clear to indicate how exactly the curve looks like.
It could be that a floating-point
number was desired instead of the integer division in

[M-11] MISSING SCALING FACTOR IN RECORDKEYPURCHASE?

maxTokens = IMintableERC20(udt).balanceOf(address(this)) * valueInETH / (2 + 2

Impact

Recommended Mitigation Steps

https://github.com/code-423n4/2021-11-unlock-findings/issues/165#issuecomment-991683180
https://github.com/code-423n4/2021-11-unlock-findings/issues/156

2 * valueInETH / grossNetworkProduct . In that case, consider adding a scaling factor to

this term and divide by it at the end of the computation again.

julien51 (Unlock Protocol) commented:

I am not fully sure I understand what the problem is here?

0xleastwood (judge) commented:

I think the warden is raising an issue where
2 * valueInEth / grossNetworkProduct will more than likely truncate and

return 0 . I think this is a valid finding.

julien51 (Unlock Protocol) commented:

Hum, we did some tests and could not reproduce here.

0xleastwood (judge) commented:

I’m not sure how 2 * valueInETH / grossNetworkProduct does not always lead
to some truncation. grossNetworkProduct is equal to valueInETH in the first

call but always greater than valueInETH in any subsequent calls.

Submitted by kenzo

More keys can be minted than maxNumberOfKeys since shareKey and grantKey do not

check if the lock is sold out.

More keys can be minted than intended.

[M-12] MISSING MAXNUMBEROFKEYS CHECKS IN SHAREKEY
AND GRANTKEY

Impact

Proof of Concept

https://github.com/code-423n4/2021-11-unlock-findings/issues/156#issuecomment-991690466
https://github.com/code-423n4/2021-11-unlock-findings/issues/156#issuecomment-1013844481
https://github.com/code-423n4/2021-11-unlock-findings/issues/156#issuecomment-1068793080
https://github.com/code-423n4/2021-11-unlock-findings/issues/156#issuecomment-1075696998
https://github.com/code-423n4/2021-11-unlock-findings/issues/55

In both shareKey and grantKey , if minting a new token, a new token is simply minted

(and _totalSupply increased) without checking it against maxNumberOfKeys .
This is
unlike purchase , which has the notSoldOut modifier.

grantKey :
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-
contracts/contracts/mixins/MixinGrantKeys.sol#L41:#L42

shareKey :
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-

contracts/contracts/mixins/MixinTransfer.sol#L83:#L84
Both functions call
_assignNewTokenId which does not check maxNumberOfKeys.

https://github.com/code-423n4/2021-11-unlock/blob/main/smart-
contracts/contracts/mixins/MixinKeys.sol#L311:#L322
So you can say that
_assignNewTokenId is actually the root of the error, and this is why I am submitting this as

1 finding and not 2 (for grantKey/shareKey).

Add a check to _assignNewTokenId that will revert if we need to record a new key and
maxNumberOfKeys has been reached.

julien51 (Unlock Protocol) confirmed and commented:

This is actually intentional. We want the lock manager to be able to grant keys
even if the lock is sold out. Note that the lock manager could also increase the
supply if they needed anyway.
However, we should take that into account in the
shareKey flow so I’ll mark as confirmed for that flow.

Submitted by WatchPug

Recommended Mitigation Steps

[M-13] MALICIOUS USER CAN GET INFINITE FREE TRIAL BY
REPEATEDLY REFUND AND REPURCHASE RIGHT BEFORE THE
FREETRIAL ENDS

https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinGrantKeys.sol#L41:#L42
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinTransfer.sol#L83:#L84
https://github.com/code-423n4/2021-11-unlock/blob/main/smart-contracts/contracts/mixins/MixinKeys.sol#L311:#L322
https://github.com/code-423n4/2021-11-unlock-findings/issues/55#issuecomment-1004066282
https://github.com/code-423n4/2021-11-unlock-findings/issues/189

The current design/implementation allows users who are refunded before to get another
freeTrial . This can be exploited by malicious users to get an infinite free trial.

Given:

keyPrice is 1 ETH;

freeTrialLength is 31 days.

A malicious user can:

1. Call purchase() , pay 1 ETH and get 31 days of freeTrial on day 1;

2. Call cancelAndRefund() on day 30 and get 1 ETH of refund; then call purchase()

again, pay 1 ETH and get 31 days of freeTrial again.

Repeat the steps above and the user can get infinite freeTrial .

A malicious third party may provide a service named freeUnlock , which will call
cancelAndRefund() and purchase() automatically right before the end of the

freeTrial . This can cause fund loss to all the owners that provide a freeTrial .

Consider adding a mapping(address => uint256) freeTrialEnds and make sure each

address can only get 1 freeTrial .

julien51 (Unlock Protocol) disputed and commented:

Isn’t that the case with every free trial system?
If they use the same address the
lock manager could easily use the hook system to keep track of who already had
received a full refund and not grant it on the 2nd cancellation.
The user could still
use new addresses all the time, and in that case that would be valid, but that is

Proof of Concept

Impact

Recommendation

https://github.com/code-423n4/2021-11-unlock-findings/issues/189#issuecomment-979654912

actually the case with a lot of systems like that :)
One of my roommates in
college was just subscribing to newspaper and getting the full risk-free refund by
using a different name every time (but used the same address)

0xleastwood (judge) commented:

While I agree with the warden, there is potential for unlimited free trials. Limiting
a free trial to a single address does not resolve the issue as an attacker can
generate any number of addresses from a single seed. However, I do understand
this is a tricky issue to workaround.

So I’m not sure how this should be treated as it does affect how the protocol is
intended to operate. Is there any reason for users to not abuse this @julien51 ?
Typically with newspapers, you have to provide credit card details, so an
individual is really limited by the number of cards they hold.

julien51 (Unlock Protocol) commented:

As you noted, there is no way to prevent free trials from being abused which is
why by default, locks do not have a free trial: they have to be manually explicitly
configured. From there, since it’s trivial to just create an infinite number of
accounts, anyone could just claim free trials over and over from new accounts.

0xleastwood (judge) decreased severity to Medium and commented:

As per sponsor, trials are not enabled by default. But seeing as this impacts
protocol availability through abuse if enabled. I’ll mark this as medium .

Submitted by itsmeSTYJ

A malicious user is able to withdraw all payments that were paid to a lock owner if the
owner increases the keyPrice.

[M-14] MIXINREFUNDS: FRONTRUN UPDATEKEYPRICING() FOR
FREE PROFIT

https://github.com/code-423n4/2021-11-unlock-findings/issues/189#issuecomment-1013831584
https://github.com/code-423n4/2021-11-unlock-findings/issues/189#issuecomment-1014073979
https://github.com/code-423n4/2021-11-unlock-findings/issues/189#issuecomment-1014093336
https://github.com/code-423n4/2021-11-unlock-findings/issues/72

When updateKeyPricing() is called to increase the price of a key, it is possible to frontrun
this call and buy many keys at the cheaper price then request for a refund at the higher
price.

Keep track of the price at which keys are purchased so that when you issue a refund, you
use the original keyPrice to refund instead of the updated keyPrice

julien51 (Unlock Protocol) acknowledged, but disagreed with High severity and
commented:

This is only true for locks where there is no penalty. We should make it clear on
the front-end that when changing the price it is recommended to set up a penalty
(at least temporarily) for the price difference so that no key can be refunded for
the full price.

0xleastwood (judge) commented:

Circling back on this, I’m not sure how a penalty would be correctly applied to all
locks. Wouldn’t users who wanted to get a refund for their key get penalised if
they purchase after the change in key price? I think it would also be safer to
update the key price and apply the penalty in the one transaction.

julien51 (Unlock Protocol) commented:

I think that is a good finding, but there again (like often) I think this is pretty edgy.
The cancellation penalty is pretty easy to apply just to a single lock from the lock
manager’s perspective. Before changing the lock price, a lock manager can
easily apply a penalty for the difference in price. IE if I change the price from 10
to 12, I apply a penalty for 2 and anyone who tries to abuse this will only get a
refund of 12-2 = 10.

On top of that we’re actually storing the amount paid for the latest key as part of
our next upgrade to support automatically recurring memberships, which should

Proof of Concept

Recommendation

https://github.com/code-423n4/2021-11-unlock-findings/issues/72#issuecomment-1004133079
https://github.com/code-423n4/2021-11-unlock-findings/issues/72#issuecomment-1075679839
https://github.com/code-423n4/2021-11-unlock-findings/issues/72#issuecomment-1004133079
https://github.com/unlock-protocol/unlock/blob/b7c5a555efc3c2be619cbb942eb67d4008baa049/smart-contracts/contracts/mixins/MixinRefunds.sol#L70

make things even more robust as anyone will only get re-imbursed based on
what they paid…

0xleastwood (judge) decreased severity to Medium and commented:

Considering the sponsor’s comments and after some further discussion on
Discord. I think it is more correct to downgrade this to medium severity. While it

isn’t clear, the lock manager is expected to apply a penalty before updating the
cost of a membership such that users cannot game the price difference.
However, this isn’t enforced on-chain or documented anywhere so based on the
judge’s and warden’s context at the time, this seemed like a valid high severity
issue. It is important to note that users who refund their membership after
purchasing a membership post price change will be refunded less than users
who purchased their memberships before the price change. The sponsor is
looking to integrate these fixes in their next upgrade.

[L-01] Unlock.addLockTemplate does not adequately increment version, leading to

gaps in version Submitted by elprofesor, also found by loop, pauliax, 0x0x0x, and
harleythedog

[L-02] Insufficient version validation causes denial of service for PublicLock during
lock upgrades Submitted by elprofesor

[L-03] MixinGrantKeys:grantKeys possible DoS with (Unexpected) revert Submitted by
GiveMeTestEther

[L-04] No ERC20 safeApprove called & not success check Submitted by cmichel, also
found by Reigada and 0x0x0x

[L-05] MixinLockCore: use safeApprove from SafeERC20, and do approve(0) before
approve(amount) Submitted by GiveMeTestEther

[L-06] getTransferFee() Fee Could Be 0 Submitted by Meta0xNull

Low Risk Findings (32)

https://github.com/code-423n4/2021-11-unlock-findings/issues/72#issuecomment-1075679839
https://github.com/code-423n4/2021-11-unlock-findings/issues/133
https://github.com/code-423n4/2021-11-unlock-findings/issues/134
https://github.com/code-423n4/2021-11-unlock-findings/issues/62
https://github.com/code-423n4/2021-11-unlock-findings/issues/161
https://github.com/code-423n4/2021-11-unlock-findings/issues/151
https://github.com/code-423n4/2021-11-unlock-findings/issues/140

[L-07] The function MixinLockCore.approveBeneficiary is susceptible to a race
condition Submitted by Ruhum

[L-08] Unlock has incomplete fallback function which may cause loss of funds
Submitted by elprofesor

[L-09] initialize functions can be frontrun Submitted by cmichel, also found by
WatchPug

[L-10] _cancelAndRefund is not protected from re-entrancy Submitted by pauliax

[L-11] setKeyManagerOf has no address-0 check Submitted by kenzo

[L-12] Distribution of tokens in recordKeyPurchase Submitted by pauliax

[L-13] a single user can become owner of multiple token ids Submitted by
GiveMeTestEther

[L-14] Setting the admin in initialize initializeProxyAdmin can be frontrun by an
attacker Submitted by Jujic

[L-15] Scenario where variable in Unlock.recordKeyPurchase() is not initialized
Submitted by Ruhum

[L-16] Consider adding storage gaps to Mixin*** contracts Submitted by WatchPug

[L-17] Lock template versions can be overwritten Submitted by cmichel

[L-18] Can set arbitrary lock templates Submitted by cmichel

[L-19] DoS when onKeyPurchaseHook reverts Submitted by cmichel

[L-20] PREVENT DIV BY 0 Submitted by defsec

[L-21] Confliction on double initialize functions front-run minter Submitted by
hagrid

[L-22] Unimplemented function computeAvailableDiscountFor Submitted by
harleythedog

[L-23] Unused function parameters Submitted by jayjonah8

[L-24] Wrong event parameter emitted at _setKeyManagerOf Submitted by kenzo

[L-25] Potential division by 0 in recordKeyPurchase Submitted by loop

https://github.com/code-423n4/2021-11-unlock-findings/issues/29
https://github.com/code-423n4/2021-11-unlock-findings/issues/136
https://github.com/code-423n4/2021-11-unlock-findings/issues/153
https://github.com/code-423n4/2021-11-unlock-findings/issues/223
https://github.com/code-423n4/2021-11-unlock-findings/issues/52
https://github.com/code-423n4/2021-11-unlock-findings/issues/230
https://github.com/code-423n4/2021-11-unlock-findings/issues/120
https://github.com/code-423n4/2021-11-unlock-findings/issues/117
https://github.com/code-423n4/2021-11-unlock-findings/issues/27
https://github.com/code-423n4/2021-11-unlock-findings/issues/174
https://github.com/code-423n4/2021-11-unlock-findings/issues/154
https://github.com/code-423n4/2021-11-unlock-findings/issues/158
https://github.com/code-423n4/2021-11-unlock-findings/issues/163
https://github.com/code-423n4/2021-11-unlock-findings/issues/170
https://github.com/code-423n4/2021-11-unlock-findings/issues/85
https://github.com/code-423n4/2021-11-unlock-findings/issues/74
https://github.com/code-423n4/2021-11-unlock-findings/issues/3
https://github.com/code-423n4/2021-11-unlock-findings/issues/84
https://github.com/code-423n4/2021-11-unlock-findings/issues/43

[L-26] Function spec and implementation difference / strict comparison Submitted by
loop

[L-27] msg.value should be 0 when token is not native Submitted by pauliax

[L-28] tokenByIndex returns wrong token id Submitted by pauliax

[L-29] Interface and implementation differ Submitted by pauliax

[L-30] onKeyPurchase hook expects amount + discount Submitted by pauliax

[L-31] Validations Submitted by pauliax

[L-32] MixinRefunds.sol#cancelAndRefund() Potential fund loss on

cancelAndRefund() for users who purchased multiple times Submitted by
WatchPug, also found by GiveMeTestEther

[N-01] Use safeTransfer consistently instead of transfer Submitted by Jujic

[N-02] freeTrialLength is used as full refund period Submitted by 0x0x0x

[N-03] Open TODOs Submitted by mics, also found by Meta0xNull, loop, pauliax,
ye0lde, hagrid, and defsec

[N-04] Function grantKeys() - Bulk Send Free Keys Are Not Practical & Gas May Over
Block Size Limit Submitted by Meta0xNull

[N-05] ERC20 return values not checked Submitted by cmichel

[N-06] Unable to change token approval when tokenAddress changed Submitted by
gzeon

[N-07] input validation Submitted by sabtikw

[N-08] Input validation of Zero address on addLockTemplate Submitted by BouSalman

[N-09] Input validation of Zero address on function initialize() Submitted by
BouSalman

[N-10] Input validation Zero address Submitted by BouSalman

Non-Critical Findings (54)

https://github.com/code-423n4/2021-11-unlock-findings/issues/45
https://github.com/code-423n4/2021-11-unlock-findings/issues/220
https://github.com/code-423n4/2021-11-unlock-findings/issues/222
https://github.com/code-423n4/2021-11-unlock-findings/issues/224
https://github.com/code-423n4/2021-11-unlock-findings/issues/225
https://github.com/code-423n4/2021-11-unlock-findings/issues/228
https://github.com/code-423n4/2021-11-unlock-findings/issues/187
https://github.com/code-423n4/2021-11-unlock-findings/issues/109
https://github.com/code-423n4/2021-11-unlock-findings/issues/96
https://github.com/code-423n4/2021-11-unlock-findings/issues/22
https://github.com/code-423n4/2021-11-unlock-findings/issues/147
https://github.com/code-423n4/2021-11-unlock-findings/issues/157
https://github.com/code-423n4/2021-11-unlock-findings/issues/215
https://github.com/code-423n4/2021-11-unlock-findings/issues/77
https://github.com/code-423n4/2021-11-unlock-findings/issues/83
https://github.com/code-423n4/2021-11-unlock-findings/issues/86
https://github.com/code-423n4/2021-11-unlock-findings/issues/81

[N-11] Insufficient input validation Submitted by WatchPug

[N-12] Missing input validation on array lengths (MixinGrantKeys.sol) Submitted by
ye0lde

[N-13] transferOwnership should be two step process Submitted by defsec, also found
by Meta0xNull

[N-14] USE OF DEPRECATED _SETUPROLE FUNCTION Submitted by Reigada

[N-15] USE OF FLOATING PRAGMA Submitted by Reigada, also found by jayjonah8

[N-16] MixinERC721Enumerable.tokenOfOwnerByIndex - parameter _index can be
removed Submitted by Reigada

[N-17] Missing events for critical operations Submitted by WatchPug

[N-18] Initializer modifiers should be called in the same way everywhere Submitted by
jayjonah8

[N-19] Wrong comment in recordKeyPurchase Submitted by kenzo

[N-20] Inconsistent code and comment Submitted by gzeon

[N-21] MixinLockCore.sol has wrong comments Submitted by GiveMeTestEther

[N-22] Incorrect or confusing comments or missing code in tokenOfOwnerByIndex
Submitted by ye0lde

[N-23] named return issue Submitted by mics

[N-24] safeApprove is deprecated. Submitted by mics

[N-25] Use explicit variables type Submitted by BouSalman

[N-26] Function type from public to external Submitted by BouSalman

[N-27] Missing event for critical updateBeneficiary function Submitted by BouSalman

[N-28] Function type from public to external tokenByIndex() Submitted by BouSalman

[N-29] Fix event params for KeyManagerChanged Submitted by HardlyDifficult

[N-30] Reduce rounding error when minting UDT in Unlock Submitted by HardlyDifficult

[N-31] shareKey onERC721Received tokenId Submitted by HardlyDifficult

[N-32] Remove fallback function Submitted by HardlyDifficult

https://github.com/code-423n4/2021-11-unlock-findings/issues/171
https://github.com/code-423n4/2021-11-unlock-findings/issues/105
https://github.com/code-423n4/2021-11-unlock-findings/issues/169
https://github.com/code-423n4/2021-11-unlock-findings/issues/14
https://github.com/code-423n4/2021-11-unlock-findings/issues/15
https://github.com/code-423n4/2021-11-unlock-findings/issues/32
https://github.com/code-423n4/2021-11-unlock-findings/issues/204
https://github.com/code-423n4/2021-11-unlock-findings/issues/1
https://github.com/code-423n4/2021-11-unlock-findings/issues/82
https://github.com/code-423n4/2021-11-unlock-findings/issues/212
https://github.com/code-423n4/2021-11-unlock-findings/issues/122
https://github.com/code-423n4/2021-11-unlock-findings/issues/208
https://github.com/code-423n4/2021-11-unlock-findings/issues/20
https://github.com/code-423n4/2021-11-unlock-findings/issues/21
https://github.com/code-423n4/2021-11-unlock-findings/issues/37
https://github.com/code-423n4/2021-11-unlock-findings/issues/5
https://github.com/code-423n4/2021-11-unlock-findings/issues/75
https://github.com/code-423n4/2021-11-unlock-findings/issues/76
https://github.com/code-423n4/2021-11-unlock-findings/issues/128
https://github.com/code-423n4/2021-11-unlock-findings/issues/131
https://github.com/code-423n4/2021-11-unlock-findings/issues/91
https://github.com/code-423n4/2021-11-unlock-findings/issues/94

[N-33] Unnecessary function parameter in Unlock.upgradeLock() function Submitted
by Ruhum

[N-34] Changes that affect access control should be accompanied by an event
Submitted by Ruhum

[N-35] Constants are not explicitly declared Submitted by WatchPug

[N-36] Code Style: Unnecessary public function visibility Submitted by WatchPug

[N-37] Consider adding initializer modifier to _initialize** functions Submitted by
WatchPug

[N-38] Incomplete implementation Submitted by WatchPug

[N-39] MixinPurchase#purchase() Consider checking if _referrer equals _recipient
Submitted by WatchPug

[N-40] Race condition on ERC20 approval Submitted by WatchPug

[N-41] Typos Submitted by WatchPug

[N-42] Critical changes should use two-step procedure Submitted by WatchPug

[N-43] Order of layout is wrong in ERC20Patched.sol Submitted by aga7hokakological

[N-44] Order of function is wrong in contracts ERC20PermitUpgradeable,
ERC20VotesCompUpgradeable, EIP712Upgradeable Submitted by aga7hokakological

[N-45] Missing _beforeTokenTransfer Token Transfer Handle Submitted by hagrid

[N-46] Initialization parameters of new lock template are hardcoded Submitted by
kenzo

[N-47] Unconventional log emittance confuses Etherscan Submitted by kenzo

[N-48] Commented lines of code Submitted by loop

[N-49] Use of access control require statement when modifier exists Submitted by
loop

[N-50] grantKeys no check on parameter array lengths and values Submitted by
nathaniel

[N-51] Store owners in EnumerableSet Submitted by pauliax

[N-52] == true doesn’t bring anything Submitted by 0x0x0x

https://github.com/code-423n4/2021-11-unlock-findings/issues/25
https://github.com/code-423n4/2021-11-unlock-findings/issues/28
https://github.com/code-423n4/2021-11-unlock-findings/issues/173
https://github.com/code-423n4/2021-11-unlock-findings/issues/184
https://github.com/code-423n4/2021-11-unlock-findings/issues/193
https://github.com/code-423n4/2021-11-unlock-findings/issues/197
https://github.com/code-423n4/2021-11-unlock-findings/issues/198
https://github.com/code-423n4/2021-11-unlock-findings/issues/202
https://github.com/code-423n4/2021-11-unlock-findings/issues/205
https://github.com/code-423n4/2021-11-unlock-findings/issues/207
https://github.com/code-423n4/2021-11-unlock-findings/issues/11
https://github.com/code-423n4/2021-11-unlock-findings/issues/9
https://github.com/code-423n4/2021-11-unlock-findings/issues/78
https://github.com/code-423n4/2021-11-unlock-findings/issues/137
https://github.com/code-423n4/2021-11-unlock-findings/issues/90
https://github.com/code-423n4/2021-11-unlock-findings/issues/46
https://github.com/code-423n4/2021-11-unlock-findings/issues/48
https://github.com/code-423n4/2021-11-unlock-findings/issues/56
https://github.com/code-423n4/2021-11-unlock-findings/issues/231
https://github.com/code-423n4/2021-11-unlock-findings/issues/115

[N-53] Avoiding Initialization of Loop Index If It Is 0 Submitted by Meta0xNull

[N-54] Upgrade pragma to at least 0.8.4 Submitted by defsec

[G-01] MixinTransfer:getTransferFee gas optimization with unchecked Submitted by
GiveMeTestEther

[G-02] Setters of UnlockProtocolGovernor.sol can be implemented more efficiently

Submitted by 0x0x0x

[G-03] Cache length at for loop to save gas Submitted by 0x0x0x

[G-04] MixinGrantKeys.sol apply requiere statements earlier Submitted by 0x0x0x

[G-05] Use unchecked operation to save gas Submitted by 0x0x0x

[G-06] 4 variables are cached and used only once at Unlock.sol#upgradeLock

Submitted by 0x0x0x

[G-07] UnlockUtils.sol#address2Str can be implemented much cheaper Submitted
by 0x0x0x

[G-08] Unnecessary fallback function Submitted by BouSalman

[G-09] Adding unchecked directive can save gas Submitted by WatchPug, also found
by GiveMeTestEther, mics, and pauliax

[G-10] MixinGrantKeys:grantKeys gas optimizations Submitted by GiveMeTestEther,
also found by Reigada and defsec

[G-11] Unlock:createLock no need to define the newLock as payable Submitted by
GiveMeTestEther, also found by WatchPug

[G-12] Unlock:_deployProxyAdmin return value is not used Submitted by
GiveMeTestEther

[G-13] MixinFunds:_initializeMixinFunds move the require statement to the beginning
of the function so save gas in the case of a revert Submitted by GiveMeTestEther, also
found by loop

Gas Optimizations (48)

https://github.com/code-423n4/2021-11-unlock-findings/issues/146
https://github.com/code-423n4/2021-11-unlock-findings/issues/12
https://github.com/code-423n4/2021-11-unlock-findings/issues/123
https://github.com/code-423n4/2021-11-unlock-findings/issues/101
https://github.com/code-423n4/2021-11-unlock-findings/issues/103
https://github.com/code-423n4/2021-11-unlock-findings/issues/110
https://github.com/code-423n4/2021-11-unlock-findings/issues/111
https://github.com/code-423n4/2021-11-unlock-findings/issues/116
https://github.com/code-423n4/2021-11-unlock-findings/issues/98
https://github.com/code-423n4/2021-11-unlock-findings/issues/4
https://github.com/code-423n4/2021-11-unlock-findings/issues/203
https://github.com/code-423n4/2021-11-unlock-findings/issues/149
https://github.com/code-423n4/2021-11-unlock-findings/issues/226
https://github.com/code-423n4/2021-11-unlock-findings/issues/232
https://github.com/code-423n4/2021-11-unlock-findings/issues/60

[G-14] Gas: Assume 0 when creating struct Submitted by HardlyDifficult

[G-15] Gas: Cast instead of creating new variables Submitted by HardlyDifficult, also
found by TomFrench and cmichel

[G-16] Avoid On Chain Computation That Have Known Answer to Save Gas Submitted
by Meta0xNull

[G-17] Long Revert Strings Submitted by Reigada, also found by WatchPug

[G-18] Using uint16 for lock versions increases gas costs for no reason. Submitted by
TomFrench

[G-19] Unused named returns Submitted by WatchPug

[G-20] UnlockUtils.sol#uint2Str() Implementation can be simpler and save some

gas Submitted by WatchPug

[G-21] MixinLockCore.sol#updateKeyPricing() Check of _tokenAddress can be
done earlier to save gas Submitted by WatchPug

[G-22] Remove unnecessary variables can make the code simpler and save some gas
Submitted by WatchPug

[G-23] Redundant check of owner() != address(0) Submitted by WatchPug

[G-24] Changing function visibility from public to external can save gas Submitted by
WatchPug, also found by loop, mics, nathaniel, and Jujic

[G-25] Avoid unnecessary storage reads can save gas Submitted by WatchPug

[G-26] Remove unnecessary function can make the code simpler and save some gas
Submitted by WatchPug

[G-27] MixinRefunds.sol#_getCancelAndRefundValue Cache and read storage
variables from the stack can save gas Submitted by WatchPug

[G-28] Gas: _recordOwner pushes duplicates Submitted by cmichel

[G-29] Inconsistent use of _msgSender() Submitted by defsec

[G-30] Gas improvement on the nonce increment Submitted by defsec

[G-31] Less than 256 uints are not gas efficient Submitted by defsec

[G-32] Gas optimization: Unused variable yieldedDiscountTokens Submitted by
gzeon

https://github.com/code-423n4/2021-11-unlock-findings/issues/127
https://github.com/code-423n4/2021-11-unlock-findings/issues/129
https://github.com/code-423n4/2021-11-unlock-findings/issues/145
https://github.com/code-423n4/2021-11-unlock-findings/issues/36
https://github.com/code-423n4/2021-11-unlock-findings/issues/24
https://github.com/code-423n4/2021-11-unlock-findings/issues/177
https://github.com/code-423n4/2021-11-unlock-findings/issues/178
https://github.com/code-423n4/2021-11-unlock-findings/issues/179
https://github.com/code-423n4/2021-11-unlock-findings/issues/185
https://github.com/code-423n4/2021-11-unlock-findings/issues/194
https://github.com/code-423n4/2021-11-unlock-findings/issues/196
https://github.com/code-423n4/2021-11-unlock-findings/issues/199
https://github.com/code-423n4/2021-11-unlock-findings/issues/200
https://github.com/code-423n4/2021-11-unlock-findings/issues/206
https://github.com/code-423n4/2021-11-unlock-findings/issues/167
https://github.com/code-423n4/2021-11-unlock-findings/issues/209
https://github.com/code-423n4/2021-11-unlock-findings/issues/210
https://github.com/code-423n4/2021-11-unlock-findings/issues/89
https://github.com/code-423n4/2021-11-unlock-findings/issues/213

[G-33] MixinRefunds: use variable to save gas Submitted by itsmeSTYJ

[G-34] MixinPurchase: gas optimisation by relying on 0.8.0 auto revert on underflow.
Submitted by itsmeSTYJ

[G-35] Redundant check of freeTrialLength == 0 Submitted by nathaniel

[G-36] Precalculate expressions Submitted by pauliax

[G-37] Unnecessary checks Submitted by pauliax

[G-38] Refund amount and penalty calculation Submitted by pauliax

[G-39] timePlusFee = timeRemaining Submitted by pauliax

[G-40] assigned operations to constant variables Submitted by pauliax, also found by
Reigada

[G-41] 0 valueInETH Submitted by pauliax

[G-42] ++/— are cheapest Submitted by pauliax

[G-43] address(this).address2Str() Submitted by pauliax

[G-44] Use existing memory version of state variables Submitted by ye0lde

[G-45] Unused Named Returns Submitted by ye0lde

[G-46] Gas: remove owners array Submitted by HardlyDifficult

[G-47] Unlock.sol#RecordKeyPurchases can be implemented cheaper Submitted by
0x0x0x

[G-48] Gas: Merge callbacks to Unlock on purchase Submitted by HardlyDifficult

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart
contracts. Security researchers are rewarded at an increasing rate for finding higher-risk
issues. Contest submissions are judged by a knowledgeable security researcher and

Disclosures

https://github.com/code-423n4/2021-11-unlock-findings/issues/68
https://github.com/code-423n4/2021-11-unlock-findings/issues/69
https://github.com/code-423n4/2021-11-unlock-findings/issues/54
https://github.com/code-423n4/2021-11-unlock-findings/issues/233
https://github.com/code-423n4/2021-11-unlock-findings/issues/234
https://github.com/code-423n4/2021-11-unlock-findings/issues/236
https://github.com/code-423n4/2021-11-unlock-findings/issues/237
https://github.com/code-423n4/2021-11-unlock-findings/issues/238
https://github.com/code-423n4/2021-11-unlock-findings/issues/239
https://github.com/code-423n4/2021-11-unlock-findings/issues/240
https://github.com/code-423n4/2021-11-unlock-findings/issues/241
https://github.com/code-423n4/2021-11-unlock-findings/issues/121
https://github.com/code-423n4/2021-11-unlock-findings/issues/66
https://github.com/code-423n4/2021-11-unlock-findings/issues/130
https://github.com/code-423n4/2021-11-unlock-findings/issues/114
https://github.com/code-423n4/2021-11-unlock-findings/issues/126

solidity developer and disclosed to sponsoring developers. C4 does not conduct formal
verification regarding the provided code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project. All
smart contract software should be used at the sole risk and responsibility of users.

T W IT T E R // D I S C O R D // G IT H U B

0 XC 2 B C 2 F 8 9 0 0 6 7 C 5 1 1 2 1 5 F 9 4 6 3 A 0 6 4 2 2 1 5 7 7 A 5 3 E 1 0 //

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

